NONLINEAR OPTICS (PHYS 568)

Spring 2022 - Instructor: M. Sheik-Bahae University of New Mexico Homework #6, Due Monday, April 4

1. Thermal n₂eff

- (a) Calculate the nonlocal n_2^{eff} (defined as $<\Delta n>/I_0$) due to laser heating of a liquid characterized by its absorption coefficient α (cm⁻¹), density ρ (gr./cm³), heat capacity $C_v(J/K/gr.)$ and thermo-optic coefficient dn/dT (K⁻¹). The laser intensity is $I(t)=I_0f(t/t_p)$ where I_0 is the peak intensity and $f(t/t_p)$ denotes the normalized temporal profile of the pulse. Thermal diffusion can be ignored in this problem if we assume that the diffusion time is much longer than t_p while being much shorter than the inter-pulse spacing. The latter requirement is for avoiding heat accumulation from pulse to pulse.
- (b) Evaluate n_2^{eff} for liquid CS_2 and a pulsed CO_2 laser (λ =10.6 µm) having a square temporal profile (t_p =100 ns). The CS_2 parameters are α =0.2 cm⁻¹, ρC_v =1.3 J/K/cm³, and dn/dT=-8x10⁻⁴ K⁻¹.
- (c) If the sound velocity (v_s) in CS_2 is $1.5x10^5$ cm/sec., what is the largest laser spot-size (w_0) for which the n_2^{eff} obtained in (b) is valid? What happens as the spot size becomes larger than this value?

2. n_2^{eff} due to photo-generation of charge-carriers in semiconductors:

(a) Calculate the n_2^{eff} due to resonant interband charge-carrier generation in semiconductors. The known parameters for the semiconductor are: the band-gap energy E_g , the electron effective mass m^* (for both conduction and valence bands), the valence-to-conduction band absorption coefficient α , and the carrier recombination time τ . This requires a calculation of the electronic density change ΔN (in both bands) due to linear absorption followed by the calculation of the resultant index change Δn from both bands using a harmonic classical electron oscillator (CEO) model. In this simple approach, the electrons in the valence band are considered bound with a resonant frequency $\omega_0 = \omega_g = E_g/\hbar$, while the conduction electrons are considered free ($\omega_0 = 0$). Ignore damping in the CEO models. The governing equation for ΔN is:

$$\frac{d\Delta N}{dt} = \frac{\alpha I(t)}{\hbar \omega} - \frac{\Delta N}{\tau}$$

where $\hbar\omega$ is the incident photon energy and $I(t)=I_0f(t/t_p)$ is the instantaneous laser intensity. Consider two extreme cases of $t_p>>\tau$ and $t_p<<\tau$. (You may assume a rectangular pulse).

- (b) Evaluate n_2^{eff} (cm/W) and the effective $\chi^{(3)}$ (esu or m^2/V^2) for GaAs with E_g =1.4 eV, m^* =0.1 m_0 , α =100 cm⁻¹, τ =1 ns. The laser wavelength is λ =900 nm and t_p =10 ps.
- (c) Do you expect an (nonlinear) absorptive component $\Delta\alpha$ associated with the above index change Δn ? Explain (briefly).

Problem 3. Consider an *isotropic* nonlinear material (e.g. silica glass). We are concerned here with the self-phase modulation case where $\chi^{(3)}_{ijkl}(\omega;\omega,\omega,-\omega)$ is involved.

- (a) Show that $\chi^{(3)}_{xxxx} = \chi^{(3)}_{xxyy} + \chi^{(3)}_{xyyx} + \chi^{(3)}_{xyxy}$
- (b) Let the incident field be represented by $\vec{E} = E_0 e^{-i\omega t} (\hat{x} + e^{i\phi} \hat{y})/\sqrt{2}$ where ϕ is the phase difference between x and y components. Note that $\phi = m\pi$ and $\phi = (m+1/2)\pi$ describe the linear and circular polarization receptively. Let us now define an effective nonlinear susceptibility through:

$$\vec{P}^{(3)}(\omega) = 3\varepsilon_0 \chi_{eff}^{(3)} |E_0|^2 \vec{E}$$

- (i) Find $\chi^{(3)}_{eff}$ as a function of the $\chi^{(3)}$ tensor elements and the phase angle ϕ . Note, this corresponds to conditions where P is along E. Can we define such a χ_{eff} for all values of ϕ (i.e. elliptical polarization)? *Read Sec. 4.2 (Boyd, 3rd. ed.). You may start with Eq. 4.2.7*
- (ii) Find the circular/linear dichroism defined as $\eta = \chi^{(3)}_{eff}(\phi = \pi/2)/\chi^{(3)}_{eff}(\phi = 0)$